Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME J ; 16(8): 1970-1979, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35545659

RESUMO

Enteroviruses are ubiquitous contaminants of surface waters, yet their fate in presence of microbial congeners is poorly understood. In this work, we investigated the inactivation of Echovirus-11 (E11) and Coxsackievirus-A9 (CVA9) by bacteria isolated from Lake Geneva. Incubation of E11 or CVA9 in biologically active lake water caused inactivation of 2- and 4-log10, respectively, within 48 h. To evaluate the antiviral action of individual bacterial species, we isolated 136 bacterial strains belonging to 31 genera from Lake Geneva. The majority of isolates (92) induced decay of at least 1.5-log10 of CVA9, whereas only 13 isolates induced a comparable inactivation on E11. The most extensive viral decay was induced by bacterial isolates producing matrix metalloproteases (MMPs). Correspondingly, the addition of a specific MMP inhibitor to lake water reduced the extent of inactivation for both viruses. A lesser, though significant protective effect was also observed with inhibitors of chymotrypsin-like or trypsin-like proteases, suggesting involvement of serine proteases in enterovirus inactivation in natural systems. Overall, we demonstrate the direct effect of bacterial proteases on the inactivation of enteroviruses and identify MMPs as effective controls on enteroviruses' environmental persistence.


Assuntos
Enterovirus , Lagos , Bactérias/genética , Enterovirus/fisiologia , Enterovirus Humano B/fisiologia , Metaloproteases , Serina Proteases , Água
2.
Environ Sci Technol ; 54(18): 11292-11300, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32875801

RESUMO

Sunlight, temperature, and microbial grazing are among the environmental factors promoting the inactivation of viral pathogens in surface waters. Globally, these factors vary across time and space. The persistence of viral pathogens, and ultimately their ecology and dispersion, hinges on their ability to withstand the environmental conditions encountered. To understand how virus populations evolve under changing environmental conditions, we experimentally adapted echovirus 11 (E11) to four climate regimes. Specifically, we incubated E11 in lake water at 10 and 30 °C and in the presence and absence of sunlight. Temperature was the main driver of adaptation, resulting in an increased thermotolerance of the 30 °C adapted populations, whereas the 10 °C adapted strains were rapidly inactivated at higher temperatures. This finding is consistent with a source-sink model in which strains emerging in warm climates can persist in temperate regions, but not vice versa. A microbial risk assessment revealed that the enhanced thermotolerance increases the length of time in which there is an elevated probability of illness associated with swimming in contaminated water. Notably, 30 °C-adapted viruses also exhibited an increased tolerance toward disinfection by free chlorine. Viruses adapting to warm environments may thus become harder to eliminate by common disinfection strategies.


Assuntos
Enterovirus , Vírus , Cloro , Desinfecção , Enterovirus Humano B , Humanos
3.
Environ Sci Technol ; 54(15): 9418-9426, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32662638

RESUMO

Waterborne viruses are responsible for numerous diseases and are abundant in aquatic systems. Understanding the fate of viruses in natural systems has important implications for human health. This research quantifies the uptake of the bacteriophage T4 and the enteric virus echovirus 11 when exposed to the filter feeders Tetrahymena pyriformis and Daphnia magna, and also examines the potential of viral transfer due to trophic interactions. Experiments co-incubating each species with the viruses over 72-96 h showed up to a 4 log virus removal for T. pyriformis, while direct viral uptake by D. magna was not observed. However, viral uptake by D. magna occurred indirectly by viral transfer from prey to predator, through D. magna feeding on virus-loaded T. pyriformis. This prey-predator interaction resulted in a 1 log additional virus removal compared to removal by T. pyriformis alone. Incomplete viral inactivation by D. magna was observed through recovery of infective viruses from the daphnid tissue. This research furthers our understanding of the impacts of zooplankton filter feeding on viral inactivation and shows the potential for viral transfer through the food chain. The viral-zooplankton interactions observed in these studies indicate that zooplankton may improve water quality through viral uptake or may serve as vectors for infection by accumulating viruses.


Assuntos
Daphnia , Zooplâncton , Animais , Cadeia Alimentar , Qualidade da Água
4.
Food Environ Virol ; 12(1): 20-27, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31664651

RESUMO

Quantitative PCR (qPCR) is a convenient tool for monitoring virus concentrations in water and wastewater treatment trains, though it only informs about virus presence, but not infectivity. This limitation can be overcome if the relationship between infectivity loss and genome decay induced by a given disinfectant is known. Here, we performed inactivation experiments using two human enteroviruses, Coxsackievirus B5 and Echovirus 11, with three disinfection methods: low-pressure ultraviolet light (UV254), free chlorine (FC), and ozone. We compared the inactivation rates as measured by culturing to the decay rates of the whole genome, to evaluate the extent of qPCR-measurable genome damage as a function of inactivation. To determine genome damage, we used an approach that estimates damage across the full viral genome from the measured decay of multiple amplicons distributed across the viral genome. Correlations between inactivation and genome decay were observed for all viruses and all disinfection treatments, but results showed that even among closely related viruses, disinfection methods can damage the viral genome to different extents and that genome damage does not necessarily translate to inactivation. For both viruses, UV254 treatment had the closest relationship between inactivation and genome decay and with ozone, the rate of genome decay exceeded the inactivation rate. Finally, for FC, the ratios between methods were vastly different between viruses. This work provides the basis to relate qPCR measurements to infectivity loss and enables the establishment of molecular monitoring tools for assessing enterovirus inactivation during disinfection treatments of water and wastewater.


Assuntos
Cloro/farmacologia , Desinfetantes/farmacologia , Enterovirus Humano B/genética , Genoma Viral/efeitos dos fármacos , Genoma Viral/efeitos da radiação , Ozônio/farmacologia , Enterovirus Humano B/efeitos dos fármacos , Enterovirus Humano B/efeitos da radiação , Humanos , Raios Ultravioleta , Inativação de Vírus/efeitos dos fármacos , Inativação de Vírus/efeitos da radiação
5.
Virus Evol ; 3(2): vex035, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29225923

RESUMO

Ultraviolet light in the UVC range is a commonly used disinfectant to control viruses in clinical settings and water treatment. However, it is currently unknown whether human viral pathogens may develop resistance to such stressor. Here, we investigate the adaptation of an enteric pathogen, human echovirus 11, to disinfection by UVC, and characterized the underlying phenotypic and genotypic changes. Repeated exposure to UVC lead to a reduction in the UVC inactivation rate of approximately 15 per cent compared to that of the wild-type and the control populations. Time-series next-generation sequencing data revealed that this adaptation to UVC was accompanied by a decrease in the virus mutation rate. The inactivation efficiency of UVC was additionally compromised by a shift from first-order to biphasic inactivation kinetics, a form of 'viral persistence' present in the UVC resistant and control populations. Importantly, populations with biphasic inactivation kinetics also exhibited resistance to ribavirin, an antiviral drug that, as UVC, interferes with the viral replication. Overall, the ability of echovirus 11 to adapt to UVC is limited, but it may have relevant consequences for disinfection in clinical settings and water treatment plants.

6.
Front Microbiol ; 8: 1928, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29046672

RESUMO

The emergence of waterborne viruses with resistance to disinfection has been demonstrated in the laboratory and in the environment. Yet, the implications of such resistance for virus control remain obscure. In this study we investigate if viruses with resistance to a given disinfection method exhibit cross-resistance to other disinfectants. Chlorine dioxide (ClO2)- or UV-resistant populations of echovirus 11 were exposed to five inactivating treatments (free chlorine, ClO2, UV radiation, sunlight, and heat), and the extent of cross-resistance was determined. The ClO2-resistant population exhibited cross-resistance to free chlorine, but to none of the other inactivating treatments tested. We furthermore demonstrated that ClO2 and free chlorine act by a similar mechanism, in that they mainly inhibit the binding of echovirus 11 to its host cell. As such, viruses with host binding mechanisms that can withstand ClO2 treatment were also better able to withstand oxidation by free chlorine. Conversely, the UV-resistant population was not significantly cross-resistant to any other disinfection treatment. Overall, our results indicate that viruses with resistance to multiple disinfectants exist, but that they can be controlled by inactivating methods that operate by a distinctly different mechanism. We therefore suggest to utilize two disinfection barriers that act by different mechanisms in order to control disinfection-resistant viruses.

7.
Environ Sci Technol ; 51(18): 10746-10755, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28837336

RESUMO

Waterborne viruses can exhibit resistance to common water disinfectants, yet the mechanisms that allow them to tolerate disinfection are poorly understood. Here, we generated echovirus 11 (E11) with resistance to chlorine dioxide (ClO2) by experimental evolution, and we assessed the associated genotypic and phenotypic traits. ClO2 resistance emerged after E11 populations were repeatedly reduced (either by ClO2-exposure or by dilution) and then regrown in cell culture. The resistance was linked to an improved capacity of E11 to bind to its host cells, which was further attributed to two potential causes: first, the resistant E11 populations possessed mutations that caused amino acid substitutions from ClO2-labile to ClO2-stable residues in the viral proteins, which likely increased the chemical stability of the capsid toward ClO2. Second, resistant E11 mutants exhibited the capacity to utilize alternative cell receptors for host binding. Interestingly, the emergence of ClO2 resistance resulted in an enhanced replicative fitness compared to the less resistant starting population. Overall this study contributes to a better understanding of the mechanism underlying disinfection resistance in waterborne viruses, and processes that drive resistance development.


Assuntos
Compostos Clorados , Enterovirus Humano B , Desinfetantes , Desinfecção , Óxidos , Vírus , Água , Microbiologia da Água
8.
Environ Sci Technol ; 50(24): 13520-13528, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27709908

RESUMO

Common water disinfectants like chlorine have been reported to select for resistant viruses, yet little attention has been devoted to characterizing disinfection resistance. Here, we investigated the resistance of MS2 coliphage to inactivation by chlorine dioxide (ClO2). ClO2 inactivates MS2 by degrading its structural proteins, thereby disrupting the ability of MS2 to attach to and infect its host. ClO2-resistant virus populations emerged not only after repeated cycles of ClO2 disinfection followed by regrowth but also after dilution-regrowth cycles in the absence of ClO2. The resistant populations exhibited several fixed mutations which caused the substitution of ClO2-labile by ClO2-stable amino acids. On a phenotypic level, these mutations resulted in a more stable host binding during inactivation compared to the wild-type, thus resulting in a greater ability to maintain infectivity. This conclusion was supported by cryo-electron microscopy reconstruction of the virus particle, which demonstrated that most structural modification occurred in the putative A protein, an important binding factor. Resistance was specific to the inactivation mechanism of ClO2 and did not result in significant cross-resistance to genome-damaging disinfectants. Overall, our data indicate that resistant viruses may emerge even in the absence of ClO2 pressure but that they can be inactivated by other common disinfectants.


Assuntos
Compostos Clorados , Desinfecção , Cloro , Colífagos , Desinfetantes , Óxidos
9.
J Biotechnol ; 216: 67-75, 2015 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-26476358

RESUMO

The High Five (H5) cell line, derived from the lepidopteran Trichoplusia ni, is one of the major insect cell hosts for the production of recombinant proteins using the baculovirus expression vector system (BEVS). Here, we describe a simple polyethylenimine (PEI)-based transient gene expression (TGE) process for the rapid production of recombinant proteins from suspension-adapted H5 cells. The method was optimized using two model proteins, enhanced green fluorescent protein (EGFP) and human tumor necrosis factor receptor-Fc fusion protein (TNFR-Fc). After screening several promoter and enhancer combinations for high levels of TNFR:Fc production, an expression vector containing the Autographa californica multicapsid nucleopolyhedrovirus immediate early 1 (ie1) promoter and homologous region 5 (hr5) enhancer was selected. Cells were transfected at a density of 2×10(6) cells/mL by direct addition of DNA and PEI. Under optimized conditions, a 90% transfection efficiency (percentage of EGFP-positive cells) was obtained. In addition, we observed volumetric TNFR-Fc yields over 150µg/mL within 4 days of transfection. The method was found to be reproducible and scalable to 300mL. This plasmid-based transient transfection process is a simple and efficient alternative to the BEVS for recombinant protein production in H5 cells.


Assuntos
Expressão Gênica , Lepidópteros/citologia , Plasmídeos/metabolismo , Transfecção/métodos , Animais , Contagem de Células , Linhagem Celular , DNA/metabolismo , Humanos , Polietilenoimina/química , Regiões Promotoras Genéticas , Reprodutibilidade dos Testes , Suspensões , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...